And oh so much more!!!

Motion

physics is.....

study of the principles that govern the behavior of the stuff in the universe the study of energy & its effects

The stuff that makes stuff do stuff...The ability to do work.

the parts of the study

Mechanics the way stuff moves speed, velocity, acceleration, force, momentum

Thermal Physics temperature & heat

and more....

Wave Physicssound & light

Electro-MagneticPhysicswhat do you think...

how do we know we're moving?

reference points

- stationary (or nearly) object that we use to gauge your position
 comparison of the relative position of 2 objects
 - the closer, the better

how far you go, given a certain amount of time speed = distance / time s = d/t • units for speed are m/s (meters / seconds)

- same as speed except velocity includes <u>direction</u>
 v = d/t _____
- so your answer must include a direction

ex: 25.4 m/s N
velocity is a vector quantity

vector quantity

any measurement that includes a direction

- vector = direction
- quantity = amount

scalar quantity

any measurement that does not include direction

just the number

dist (cm) time (s)

A

What's it look like??

What if...

What is v if: you are in a boat moving 30km/hr E when the current of the river you are on is 10km/hr W??

Combined velocities...

If the v's have the same vector you add them If the v's have different vectors you subtract them.

average speed or velocity

speed during a trip... $V_{avg} = \frac{\Delta d}{\Delta t} \text{ or}$ $V_{avg} = \frac{d_f}{d_f} - \frac{d_i}{t_f} - t_i$

4.1

Acceleration...

- Is a change in velocity (over time)
 Does not mean only "getting faster"!
 Positive or negative acceleration and/or a change in direction
 a=v/t
- Unit: m/s/s or m/s²

What's it look like??

Newton's Laws of Motion...

- An object in motion will remain in motion at constant velocity (speed & direction) until acted on by an unbalanced force.
- An object at rest will remain at rest until acted on by an unbalanced force.
- Inertia (lazy): things like to keep doing what they are already doing...

Force = mass x acceleration

- More NRG stuff... Like Momentum...
- F=m·a
- Unit... kgm/s/s or kgm/s² or Newton (N)

For every force action, there is an equal and opposite force reaction.

Play time...

Newton Circus

Like Measurement Circus

- Nine (9) stations
- About 10 (ten) minutes per station
- Read Do Think Answer
- Everybody writes everything
- Final product is your own work

Last Q on at each station...

 Explain which of Newton's three laws this station is *best* demonstrating. Be complete by discussing <u>what you did</u>, you saw, you <u>measured</u>, etc. In other words, explain yourself as if the reader knew nothing about this station, or Newton's Laws for that matter.

Get to Work...

Centripetal Force

"center seeking force" Force that forces objects (in motion) toward the center of circles This is a real force...

Centrifugal Force

NOT a real force

- Called an apparent force it is what you FEEL not what is actually happening...
- You feel like you are being pushed to the outside of a circle – but you are actually being pushed in...

Centripetal acceleration

 $a_c = \frac{V^2}{r}$

Heavy stuff...

Gravity

Gravity is...

- Force of attraction
 b/t ALL objects in the universe
- Depends on the mass of the 2 objects and the distance b/t them

But what is it really??

 Weak force
 Einstein later explains that gravity is a *warp* in the "fabric of space-time"

Gravity is a contributing factor in nearly 73 percent of all accidents involving falling objects. And yet the so-called "federal government' does nothing! The stuff that makes stuff do stuff...

5 Main Forms of NRG

- Mechanical
- Thermal
- Chemical
- Electromagnetic
- Nuclear

Conservation of Energy

- Conservation of matter and energy...
- Cannot create or destroy matter or energy
- NRG lost by one thing must be gained by another –

NEVER destroyed – just MOVED

around...

TRANSFER of ENERGY or TRANSFORMATION of ENERGY

Momentum

A measure of ENERGYLike a force

- M=m·v
- Unit... gm/s or kgm/s

Different from Force?

- Think of force as a verb.
 - The bat forced the ball to move
- Think of momentum as a noun
 - The ball had a large momentum it didn't want to stop.

Remember...

- Energy cannot be created or destroyed
 - it must be conserved
- Or it may be transferred or transformed

Energy: the ability to do work work = force x distance W=Fd

Units: Nm = kgm^{or 1} Joule (J)

 \boldsymbol{S}^2

Potential Energy (E_p)

- Energy of Position (no motion)
- What effects the potential??
- Mass, Gravity, Height
- So... E_p = mgh
- Units???

Kinetic Energy (E_k)

- Energy of motion
- What affects the energy of a moving object??
- Mass & Velocity (what else is new??)
- $E_k = .5mv^2$
- Units???

- Energy (used/transferred) over timeP=W/t
- Unit = J/s or the Watt (W)

Do this now...

- Get together w/ your NEW lab partners
- Create a procedure that will allow you determine the if the mass of bob, drop height or length of cord affect the period of a pendulum.
- Remember what is required for a good procedure...
- Questions??